
ELSEVIER Parallel Computing 21(1995) 1769-1782

PARALLEL
COMPUTING

Algorithm for solving tridiagonal matrix problems
in parallel

Nathan Mattor *, Timothy J. Williams, Dennis W. Hewett

Lawrence Livermore National Laboratory, Box 808, Livermore, CA 94550, USA

Received 20 September 1993; revised 24 February 1994,9 August 1994,30 April 1995

Abstract

A new algorithm is presented, designed to solve tridiagonal matrix problems efficientiy
with parallel computers (multiple instruction stream, multiple data stream (MIMD) ma-
chines with distributed memory). The algorithm is designed to be extendable to higher order
banded diagonal systems.

Keywords: Tridiagonal systems; Linear algebra; Distributed memory multiprocessor; Banded
diagonal matrix, Interprocessor communication

1. Introduction

Currently, there are several popular methods for parailelization of the tridiago-
nal problem. The “most important” of these have recently been described with a
unified approach, through purullel factorizution [l]. Essentially, parallel factoriza-
tion divides and solves the problem by the following steps:
(1) Factor the original matrix into a product of a block matrix (that can be divided

up between processors) and a reduced matrix, which couples the block prob-
lems.

(2) Solve each block problem with one processor.
(3) Solve the reduced matrix problem.
Here, we propose a new approach to parallel solution of such systems. It is
conceptually different from parallel factorization, in that the first step is avoided:
no manipulations are performed on the original matrix before subdividing it among

* Corresponding author. Email: mattor@m5.llnl.gov

0167~8191/95/$09.50 0 1995 Elsevier Science B.V. All rights reserved
SSDZ 0167-8191(95)00033-X

1770 N. Matter et al. /Parallel Computing 21 (1995) 1769-I 782

the processors. Avoiding this step has three advantages: simplicity, speed, and one
less stability concern.

The method here is analogous to the solution of an inhomogeneous linear
differential equation, where the solution is a “particular” solution added to an
arbitrary linear combination of “homogeneous” solutions. The coefficients of the
homogeneous solutions are later determined by boundary conditions. In our
parallel method, each processor is given a contiguous subsection of a tridiagonal
system. Even with no information about the neighboring subsystems, the solution
can be obtained up to two constants. This completes the bulk of the necessary
calculations. Once each processor has obtained such a solution, the global solution
can be found by matching endpoints.

This approach allows a number of desirable features in both generality and
efficient implementation. First, the method is readily generalizable to 5diagonal
and higher banded systems, as discussed in Section 6. Second, the particular and
homogeneous solutions can be calculated quite efficiently, since there are a
number of overlapping calculations. Usual serial LU decomposition of a single
M x M tridiagonal system requires 8M floating point operations and a temporary
storage array of M elements [3,61. For the parallel routine below, the three
solutions (one particular and two homogeneous) are calculated with 13M opera-
tions (not 3 x 844 = 24M) and 120 additional temporary storage arrays, while
leaving the input data intact. Third, the interprocessor communication can be
performed quite efficiently, by the all-to-all broadcast method described in Section
4. Finally, vector processors can be utilized effectively in cases where there are a
number of banded diagonal systems to be solved.

This paper gives an implementation of this method. The algorithm is designed
with the following objectives, listed in order of priority. First, the algorithm must
minimize the number of interprocessor communications opened, since this is the
most time consuming process. Second, the algorithm allows flexibility of the
specific solution method of the tridiagonal submatrices. Here, we employ a variant
of LU decomposition, but this is easily replaced with cyclic reduction or other.
Third, we wish to minimize storage needs.

The remainder of this paper is organized as follows. Section 2 outlines the
analysis underlying the routine. Section 3 describes an algorithm for computing the
particular and two homogeneous solutions in 13M operations. Section 4 gives a
method to assemble the reduced system efficiently in each processor, solve it, and
complete the solution. Section 5 covers time consumption and performance of the
algorithm. Section 6 gives some conclusions and generalizations of this routine.
The Appendix gives program segments.

2. Basic algorithm

We consider the problem of solving the N X N linear system

AX=R, (2-l)

N. Matter et al. /Parallel Computing 21 (199.5) 1749-l 782 1771

with

4 CI

4 B, G

_4= *..
, (2-2) . . .

. .
CN-I

\ AN BN,

X=(X, x,... XNf, P-3)

R=(R, R,... RN)T, (2-4)
on a parallel computer with P processors. For simplicity, we assume N = PM, with
M an integer.

Our algorithm is as follows. First, the linear system of order N is subdivided
into P subsystems of order M. Thus, the N X N matrix A is divided into P
submatrices L,, each of dimension M X M,

A=

Ll che,er

rfe,eL L2

where eP is the pth column
dimensional vectors X and R
dimension M

x = (x1 x.2.. . Xp)T,

R=(r, r2... rp)T,

Here the submatrix L, is given by

‘&4oPl)+l CM(a-I)+1

A M(p-1)+2 B&q-I)+2 GT-Of2

L, = . .

Glp-
A

\ MP
B

MP

bf cf \

4 b,P c2p
. . .

9 . . .
. . CR-1

, Gf b& /

c&eMeT

7 P-5)
cLe’eMeT

areleL LP ,

of the M x M identity matrix. Similarly, the N
are divided into P sub-vectors x and r, each of

P-6)

(2-7)

(2-8)

1772 N. Matter et al. /Parallel Computing 21 (1995) 1769-l 782

for p = 1, 2,. . . P, with similar and obvious definitions for x and r. For brevity, we
have defined ap = A Mcp _ lj+m, corresponding to the mth subdiagonal element of
the pth submatyix. Similarly, II: = BMcp_ Ij+nt and cc = C M(p-l)+m’

For each subsystem p we define three vectors xf, xzH, and xpLH as the solutions
to the equations

Lpxp” = rp, P-9)

LpxFH= (-a; 0 O...O)T, (2-10)

L xLH=(OOO...-cQT.
P P

(2-11)

The superscripts on the x stand for “particular” solution, “upper homogeneous”
solution, and “lower homogeneous” solution respectively, from the inhomoge-
neous differential equation analogy.

The general solution of subsystem p consists of xf added to an arbitrary linear
combination of xpu” and xkH,

xp = x; + l;Hxp” + r$HX;H, (2-12)

where [:H and ep”” are yet undetermined coefficients that depend on coupling to
the neighboring solutions. To find ,$FH and tLH, Eq. (2-12) is substituted into Eq.
(2-l). Straightforward calculation and various definitions in this section show that
$H = 6,“” = 0, and the remaining 2P - 2 coefficients are determined by the
solution to the following tridiagonal linear system, or “reduced” system

- 1 xi;

I 1

f

1)
\

(2-13)

N. Mattor et al. /Parallel Computing 21 (1995) 1769-l 782 1773

where x~,~ refers to the mth element of the appropriate solution from the pth
submatrix.

The solution of Eq. (2-l), via subdivision and reassembly, is now complete. The
outline of the algorithm is as follows:
(1) For each processor, find x:, x:~, and xkH by solving Eqs. (2-9)-(2-11).
(2) Assemble the “reduced” system, Eq. (2-13), and solve for the cFH and li”.
(3) For each processor, compute the final solution by Eq. (2-12).
This algorithm is our main result. The remainder of this paper discusses practical
details of reducing operation count, memory requirement, and communication
time.

3. Computing the particular and homogeneous solutions

The three solutions x:, xFH, and xp”” are obtained by solving Eqs. (2-9)-(2-11).
The method here is based on LU decomposition, which is usually the most
efficient. With vector processors, cyclic reduction may be more efficient [4], but
only if just one system need be solved. Many applications require solution of
multiple tridiagonal systems, for which the most efficient use of vectorization is to
use LU decomposition and vectorize across the multiple systems. This is discussed
further in Section 6.

Equations (2-9)-(2-11) represent three M XM tridiagonal systems. If these
systems were independent, then solution via LU decomposition would require
3 X 8M = 24M binary floating point operations. However, exploiting overlapping
calculations and elements with value 0, gives the following algorithm, which can be
implemented with 13M binary floating point operations.

Forward elimination:

Cl 'i
to, = -

bl wi= bi - aiwi_l
i=2,3 M) . . .

r; - a;y;_ 1

yi= bi-aiwi_I
i=2,3,...M

Back substitution:

Gi=YM R R
Xi =yi-WiXi.1 i=M-1, M-2,...1

LH= _
XM wM i

x&H= -Ci+.Xi”+‘: i=M-1, M-2,...1

a.44 UH, _
WM

b,
&=f = ai

’ b; - c&!~~
i=M-1, M-2,...1

Forward substitution:

UH, _ UH
Xl Wl I

xUH = --~~~xiuf: i = 2, 3,. . . M,

1774 N. Mattor et al. /Parallel Computing 21 (I 995) 1769-l 782

where the processor index p is implicitly present on all variables, and we have
assumed that end elements a, and cM are written in the appropriate positions in
the a and c arrays. This algorithm is similar to the usual LU decomposition
algorithm, (see, e.g. 161 or [3]), but with an extra forward substitution. The sample
FORTRAN segment in the Appendix implements this with no temporary storage
arrays.

If the tridiagonal matrix is constant, and only the right hand side changes from
one matrix problem to the next, then the vectors wi, l/(bi - aiwi), x,vH, and xLH
can be precalculated and stored. The computation then requires only 5M binary
floating point operations.

4. Construction and solution of the reduced matrix

Once each processor has determined x;, xFH, and xkH, it is time to construct
and solve the reduced system of Eq. (2-13). This section describes an algorithm for
this.

We assume that the following subroutines are available for inter-processor
communication:
0 Send(ToPid,data,n): When this is invoked by processor FromPid, the

array da t a of length n is sent to processor TOP i d. It is assumed that Send is

nonblocking, in that the processor does not wait for the data to be received by
To P i d before continuing.

0 Receive(FromPid,data,nl: To complete data transmission, Receive is

invoked by processor TOP i d. Upon execution, the array sent by processor
F r omP i d is stored in the array data array of length n, It is assumed that
Re c e i ve is blocking, in that the processor waits for the data to be received
before continuing.

Opening interprocessor communications is generally the most time-consuming step
in the entire tridiagonal solution process, so it is important to minimize this. The
following algorithm consumes a time of T = (log, P)t, in opening communication
channels (where t, is the time to open one channel).
(1) Each processor writes whatever data it has that is relevant to Eq. (2-13) in the

array OutData.

(2) The 0 u t Da t a arrays from each processor are concatenated as follows (Fig. 1):
(a) Each processor p sends its 0 u t D a t a array to processor p - 1 (mod P) + 1,

and receives a corresponding array from processor p + 1 (mod P) + 1, as
depicted in Fig. l(a). The incoming array is concatenated to the end of
OutData.

(b) At the ith step, repeat the first step, except sending to processor p - 2’-’
(mod P) + 1, and receiving from processor p + 2’-’ (mod P) + 1 (Fig.
lb,c), for i = 1, 2,. . . After log, P iterations (or the next higher integer),
each processor has the contents of the reduced matrix in the 0 u t Da t a

array.
(3) Each processor rearranges the contents of its 0 u t D a t a array into the reduced

tridiagonal system, and then solves. (Each processor solves the same reduced
system.)

N. Mattor et al. /Parallel Computing 21 (I 995) 1769-I 782 1775

OutData
contents

[step21 Data flow brxj

OutData
contents (l-4) (2-5) (3-5,l) (4,5,1,2) (5,1-3)

(Step

Data flow

OutData
contents (l-5) (2-5.1) (3-5,1,2)(4,5,1-3) (5,1-4)

Fig. I. Illustration of the method used to pass reduced matrix data between processors, with P = 5 for
definiteness.
step 1: In the first iteration, each processor p sends data to processor (p - 1) (mod P)+ 1, receives data
from processor (p + 1) (mod P) + 1, and concatenates the data arrays. The result is that each Out Da t a
array contains the data from the processors shown, in order shown. The remaining elements of the
Out Da t a array are not used.
step 2: Each processor sends its Out Data array to processor (p - 2) (mod P)+ 1, receives data from
processor (p + 2) (mod P) + 1, again concatenating.
step 3: In the ith iteration (here third and final), each processor sends its Out Data array to processor
(p -2’-‘) (mod P)+ 1, receives data from processor (p +2’-‘) (mod PI+ 1, again concatenating. The
final out Data array contains all the information of the reduced matrix, ordered cyclically beginning
with the contributions of the pth processor. The information beyond the element Out D a t a (8 P 1 is not

used.

This communication is dense (every processor communicates in every step), and
periodic, so that upon completion every processor contains the fully concatenated
0 u t Da t a array).A sample program segment is provided in the Appendix.

If the elements of the tridiagonal matrix are constants, then the reduced matrix
can be precalculated and only the reduced right hand side needs to be assembled.
In this case, the above routine could be rewritten to pass l/4 as many real
numbers. This does not represent a very large time savings, since generally it is the
channel openings that is the most costly, not the amount of data passage.

At this point, the necessary components to Eq. (2-12) are stored in each
processor. All that is left is the trivial task of picking out the correct coefficients

1776 N. Mattor et al. /Parallel Computing 21 (1995) 1769-l 782

and constructing the final solution. A sample program segment is provided in the
Appendix.

5. Performance

In this section we discuss execution time of this algorithm, and present scaling
tests made with a working code,

The time consumption for this routine is as follows.
(1)

(2)

(3)

(4)

To calculate the three roots xR, xuH, and xLH requires 13M binary floating
point operations by each processor, done in parallel.
To assemble the reduced matrix in each processor requires log, P steps where
interprocessor communications are opened, and the ith opening passes 8 x 2’-’
real numbers.
Solution of the reduced system through LU decomposition requires 8(2P - 2)
binary floating point operations by each processor, done in parallel.
Calculation of the final solution requires 4M binary floating point operations
by each processor, done in parallel.

If t, is the time of one binary floating point operation, t, is the time required to
open a communication channel (latency), and t, is the time to pass one real
number once communication is opened, then the time to execute this parallel
routine is given by (optimally)

Tp= 13Mt,+(log, P)t,+8(P- l)t,+8(2P-2)t,+4Mt,

= (17M + 16P)t, + (log, P)tC + 8Pt,, (5-l)

for P B- 1. For cases of present interest, Tp is dominated by (log, P)t, and 17Mt,.
The parallel efficiency is defined by l p = TJPT,, where T, is the execution time
of a serial code which solves by LU decomposition. Since serial LU decomposition
solve an N X N system in a time T, = 8 Nt,, then the predicted parallel efficiency is

8

” = 17 + 16P2/N + (log, P) PtJNt, + 8P2t,/Ntb *
(5-2)

To test these claims empirically, the execution times of working serial and
parallel codes were measured, and l p was calculated both through its definition
and through Eq. (5-2). Fig. 2 shows E,, as a function of P for two cases, N = 200
and N = 50,000. We conclude from Fig. 2 that Eq. (5-2) (smooth lines) is reason-
ably accurate, both for the theoretical maximum efficiency (47%, acheived for
small P and large N) and for the scaling with large P.

These timings were made on the BBN TC2000 MIMD machine at Lawrence
Livermore National Laboratory. This machine has 128 MS8100 RISC processors,
connected by a butterfly-switch network. To calculate the predictions of Eq. (5-l),
the times t,, t,, and tb were obtained as follows. We chose t, = 750 psec, based on
the average time of a send/receive pair measured in our code. Based on communi-
cations measurements for the BBN [51, we chose the passage time of a single 64-bit

N. Mattor et al. /Parallel Computing 21 (1995) 1769-l 782 1717

0.6 F

0.0
0 20 40 60 80 100

P

Fig. 2. Results of scaling runs, comparing the parallel time with serial LU decomposition time. Here, ep
is the parallel efficiency and P is the number of processors. The smooth lines represent Eq. (52), and
the points are empirical results. The upper line and diamonds use N = 200, and the lower line and
squares use N = 50,000.

real number as tp = 9 psec. [In comparison, the peak bandwidth specification for
the machine of 38 MB/set per path [21 would yield tp = 0.2 psec. Using this value
instead of 9 psec makes no visible differences in Fig. 2.1 We chose t, = 1.4 psec,
based on our measured timing of 0.00218 set for the serial algorithm on the
N = 200 case. (In comparison, the peak performance specification of 10 MFLOPS
for the M88100 on 64-bit numbers would yield t, = 0.1 psec. Using this value
instead of 1.4 psec would yield curves which fall well below our measured parallel
efficiency values.) All measurements were made with 64-bit floating point arith-
metic.

It is difficult to make a comprehensive comparison with all other parallel
tridiagonal solvers, but we can compare our speed with a popular algorithm by H.
Wang [7]. That routine requires 2P - 2 steps where communications are opened
(compared with log, P such steps here), and 21M binary operations per processor
(compared with 17M here). We have not performed empirical comparisons, but
since both dominant processes have lower counts, it seems reasonable to believe
the present algorithm is generally faster.

6. Discussion and conclusions

In this paper, we have described a numerical routine for solving tridiagonal
matrices using a multiple instruction stream/multiple data stream (MIMD) paral-
lel computer with distributed memory. The routine has the advantage over existing
methods in that the initial factorization step is not used, leading to a simpler, and
probably faster, routine.

1778 N. Mattor et al. /Parallel Computing 21 (1995) 1769-1782

grid
points

-
index of

,mauices

*
X

Fig. 3. Schematic representation of a typical set of tridiagonal systems that might arise in a two
dimensional grid. For each grid line in y, there is a tridiagonal system to solve.

Stability of this algorithm is similar to that of serial LU decomposition of a
tridiagonal matrix. If the Li are unstable to LU decomposition, then pivoting could
be used. If the Li are singular, then LU decomposition fails and some alternative
should be devised. If the large matrix A is diagonally dominant, (I Ai I >
1 Bi I + 1 Ci 1) then so too are the Li. If the reduced system is unstable to LU
decomposition, this can be replaced by a different solution scheme, with little loss
of overall speed (if P -=c M).

This routine is generalizable from tridiagonal to higher systems. For example, in
a 5diagonal system, there would be four homogeneous solutions, each with an
undetermined coefficient. The coefficients of the homogeneous solutions would be
determined by a reduced system analogous to Eq. (2-13), except with O(4Pl
equations, not 2P - 2.

We briefly discuss implementation of this routine in a problem where there are
many tridiagonal systems to solve. This situation arises in many of the forseeable
applications of parallel tridiagonal solvers, such as solving differential equations by
the alternating-direction implicit method (ADI) [6] on a multidimensional grid. For
definiteness we consider the two dimensional grid depicted in Fig. 3. For each grid
line in y, there is a tridiagonal system to solve, with the index running in the x

N. Mattor et al. /Parallel Computing 21 (1995) 1749-l 782 1719

direction. The routine described in this paper is well suited for this problem, which
may be handled efficiently as follows.
(1)

(2)

(3)

(4)

The grid is divided into block subdomains in x and y. Each processor is
assigned one subdomain, with the submatrices and sub-right hand sides stored
locally. If the number of y grid lines in each subdomain is L, and the number
of x grid points is M, then each processor has L systems with it4 equations
each.
Each processor finds xR, xuH, and xLH, for each y grid line in its subdomain,
by the algorithm described in Section 3.
To assemble the reduced systems, each family of processors colinear in x
passes the reduced system data for all y grid lines in the subdomain, by the
algorithm described in Section 4. (Note that the number of communication
openings can be minimized by passing all L reduced systems together.) After
this step is complete, each processor contains L reduced systems, one for each
y grid line in its subdomain.
Each processor solves the L reduced systems, then assembles the final solu-
tion, as described at the end of Section 4.

This method has several desirable features. First, the time spent opening interpro-
cessor communications is P, log, P, (where P, is the number of processors
colinear in x), which is not greater than for solving a single system with P,
processors. Insofar as this is the most time consuming step, multidimensional
efficiency is quite good for this algorithm. Second, if the processors are vector
processors, the calculations for the y grid lines (steps 1 and 3 above) can be carried
out in parallel. This would seem to be a more efficient use of vectorization than
replacing the LU decomposition with cyclic reduction, since the former involves
fewer operations. Third, the algorithm is easily converted to a system where the
roles of x and y are reversed; all that needs to be done is exchange indices.
Complicated rearrangement of subdomains is not necessary.

Acknowledgement

This work was performed for the U.S. Department of Energy at Lawrence
Livermore National Laboratory under contract W7405-ENG-48.

Appendix

This Appendix gives sample FORTRAN routines for the algorithms in Sections
3 and 4. This makes the algorithms more concrete, and also gives some time and
memory saving steps not mentioned above.

The particular and homogeneous solutions for each submatrix are computed by
the algorithm in Section 3. This is to be run by each processor, and it is assumed
that the arrays af . . . a$ 6;. . . bi, cf.. . clt;, and rf . . . r,& are stored locally in
each processor, with the index p omitted. No temporary arrays are needed; all

1780 N. Matter et al. /Parallel Computing 21 (1995) I769-1782

intermediate storage is done in the final solution arrays, x r, x u h, and x 1 h (each
with M elements).
!forward elimination:

xuh(l)=c(l)/b(l)

xlh(l)=r(l)/b(l)

do i=2,M,l

denom=b(i) - c(i)*xuh(i-I)

if (denom.eq.0) pause !LU decomposition fails

xuh(i>=c(i)/denom

xlh(i)=(r(i) - a(i)*xlh(i-l))/denom

end do

!back substitution:

xr(M)=xlh(M)

xLh(M)=-xuh(M)

xuh(M)=a(M)/b(M)

do i=M-1,1,-l

xr(i)=xLh(i)-xuh(i)*xrO

xlh(i)= -xuh(i)*xlh(i+'i)

denom=b(i)-c(i)*xuh(i+l)

if (denom.eq.0) pause !LU decomposition fails

xuh(i)=-a(i)/denom

end do

!foIward substitution:

xuh(l)=-xuh(l)

do i=2,M,l

xuh(i)=-xuh(i)*xuh(i-1)

end do

Section 4 describes how the reduced matrix is written to each processor. A
sample routine follows, to be executed by each processor. We assume the proces-
sors are numbered p = 1, 2,. . . , P. The integer pi d is the local processor number
(called p in the mathematical parts of this paper), and the integer n p r o c s is the
code name for P. The integer 1 og ” ” 2 P is the smallest integer greater than or
equal to log,(P). The real array Out Da t a has 8 X 2L"g""2p elements. The subrou-
tine tridiagonal (a,b,c,r,sol,n) (not given here) is a serial subroutine
that returns the solution so L for the tridiagonal system with subdiagonal a,
diagonal b, superdiagonal c, and right hand side r, all of length n.

!write contributions of current processor into Out Data :

OutData(l1.

Outdata(2)=xuh(l)

OutdataC3)=xlh(l)

Outdata(4)=-xr(l)

N. Mattor et al. /Parallel Computing 21 (I 995) 1769-l 782 1781

Outdata(S)=xuh(M)

Outdata(6)=xlh(M)

OutData(7)=-I.

OutData(8)=-xr(M)

!concatenate all the Out D a t a arrays:

Log2P=log(nprocs)/lo9(2)

if (2**log2P.lt.nprocs) log2P=Log2P+l

do i=O, Log2P-I,1

nxfer=8*(2**i)

ToProc=l+mod(pid-2**i+2*nprocs,nprocs,nprocsI

FromProc=l+mod(pid+2**i,nprocs)

call Send(ToProc,OutData,nxfer)

call Receive(FromProc,OutData(nxfer+l),nxfer)

end do

!Put o u t Da t a into reduced tridiagonal form:

nsig = 8 * nprocs !no. of significant entries in 0 u t Da t a

ifirst = 8 * (nprocs-pid) + 5 !index ‘of a(l) in out Da t a

do i=1,2*nprocs-2,l

ibase=mod(ifirst+4*(i-l),nsig)

reduca(i)=OutData(ibase)

reducb(i)=OutData(ibase+l)

reducc(i)=OutData(ibase+2)

reducr(i)=OutData(ibase+3)

end do

!solve reduced system:

call tridiagonal(reduca,reducb,reducc,reducr,coeffs,

2*nprocs-2)

Once the reduced matrix is solved, then the solution can be assembled in each
processor as follows.

!pick out the appropriate elements of c oe f f s :

if (pid.ne.1) then

uhcoeff=coeffs(2*pid-2)

else

uhcoeff=O.

end if

if (pid.ne.npr0c.s) then

Lhcoeff=coeffs(2*pid-I)

else

lhcoeff=O.

end if

1782 N. Mattor et al. /Parallel Computing 21 (1995) 1749-l 782

!compute the final solution:

do i=l,M,l
x(i)=xr(i)+uhcoeff*xuho+lhcoeff*xlhO

end do

References

[l] P. Amodio and L. Brugnano, Parallel factorizations and parallel solvers for tridiagonal linear
systems, Linear Algebra and Its Applications 172 (1992) 347-364.

[2] BBN Advanced Computers Inc., Inside the TC2GV0 Computer (Cambridge, MA, 1989).
[3] R.W. Hackney and J.W. Eastwood, Computer Simulation Using Particles (Adam Hilger, Bristol,

1988) 185.
[4] R.W. Hackney and CR. Jesshope, Parallel Computers 2 (IOP, Bristol, 1988).
[5] C.E. Leith, Domain decomposition message passing for diffusion and fluid flow, in The MPCI Yearly

Report: The Attack of the Killer Micros, UCRL-ID-107022 (19911.
[6] W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Numerical Recipes (Cambridge

University Press, 1986) 19-40.
[7] H.H. Wang, A parallel method for tridiagonal equations, ACM Trans. Math. Software 7 (1981)

170-183.

